Histochemical Analysis and Ultrastructure of Trichomes and Laticifers of Croton gratissimus Burch. var. gratissimus (Euphorbiaceae)

Author:

Naidoo Danesha1,Naidoo Yougasphree1,Naidoo Gonasageran1ORCID,Kianersi Farzad2ORCID,Dewir Yaser Hassan3ORCID

Affiliation:

1. Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

2. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

3. Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Croton gratissimus (Lavender croton) possesses three distinct secretory structures. These include lepidote and glandular trichomes and non-articulated unbranched laticifers. The lepidote trichomes form a dense indumentum on the abaxial surface of the leaves and canopy the glandular trichomes. Although assumed to be non-glandular, transmission electron microscopy (TEM) indicated high metabolic activity within the stalk and radial cells. Glandular trichomes are embedded in the epidermal layer and consist of a single cell which forms a prominent stalk and dilated head. Laticifers occur on the mid-vein of leaves and are predominantly associated with vascular tissue. In the stems, laticifers are associated with the phloem and pith. Both trichome types and laticifers stained positive for alkaloids, phenolic compounds, and lipids. Positive staining for these compounds in lepidote trichomes suggests their involvement in the production and accumulation of secondary metabolites. These metabolites could provide chemical defense for the plant and potentially be useful for traditional medicine.

Funder

King Saud University, Riyadh, Saudi Arabia and the National Research Foundation (NRF), South Africa

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3