Identification of Key Modules and Candidate Genes for Powdery Mildew Resistance of Wheat-Agropyron cristatum Translocation Line WAT-2020-17-6 by WGCNA

Author:

Yao MingmingORCID,Wang Xinhua,Long Jiaohui,Bai Shuangyu,Cui Yuanyuan,Wang Zhaoyi,Liu Caixia,Liu Fenglou,Wang Zhangjun,Li Qingfeng

Abstract

As one of the serious diseases of wheat, powdery mildew (Blumeria graminis f. sp. tritici) is a long-term threat to wheat production. Therefore, it is of great significance to explore new powdery mildew-resistant genes for breeding. The wild relative species of wheat provide gene resources for resistance to powdery mildew breeding. Agropyron cristatum (2n = 4x = 28, genomes PPPP) is an important wild relative of wheat, carrying excellent genes for high yield, disease resistance, and stress resistance, which can be used for wheat improvement. To understand the molecular mechanism of powdery mildew resistance in the wheat-A. cristatum translocation line WAT2020-17-6, transcriptome sequencing was performed, and the resistance genes were analyzed by weighted gene co-expression network analysis (WGCNA). In the results, 42,845 differentially expressed genes were identified and divided into 18 modules, of which six modules were highly correlated with powdery mildew resistance. Gene ontology (GO) enrichment analysis showed that the six interested modules related to powdery mildew resistance were significantly enriched in N-methyltransferase activity, autophagy, mRNA splicing via spliceosome, chloroplast envelope, and AMP binding. The candidate hub genes of the interested modules were further identified, and their regulatory relationships were analyzed based on co-expression data. The temporal expression pattern of the 12 hub genes was verified within 96 h after powdery mildew inoculation by RT-PCR assay. In this study, we preliminarily explained the resistance mechanism of the wheat-A. cristatum translocation lines and obtained the hub candidate genes, which laid a foundation in the exploration of resistance genes in A. cristatum for powdery mildew-resistant breeding in wheat.

Funder

National Natural Science Foundation of China

Ningxia Key Research and Development Program

Natural Science Foundation of Ningxia Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. The influence of climate change on global crop productivity;Lobell;Plant Physiol.,2012

2. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security;Bekele;Food Secur.,2013

3. The future of recommendations on grain foods in dietary guidance;Mobley;J. Nutr.,2013

4. Causes of wheat powdery mildew and comprehensive control measures;Han;New Technol. New Prod. China,2018

5. Effects of powdery mildew infection on grain quality traits and yield of winter wheat;Feng;J. Triticeae Crops,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3