ADH Gene Cloning and Identification of Flooding-Responsive Genes in Taxodium distichum (L.) Rich

Author:

Zhang Rui12,Xuan Lei12,Ni Longjie12,Yang Ying12,Zhang Ya12,Wang Zhiquan12,Yin Yunlong12,Hua Jianfeng12

Affiliation:

1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China

Abstract

As a flooding-tolerant tree species, Taxodium distichum has been utilized in afforestation projects and proven to have important value in flooding areas. Alcohol dehydrogenase (ADH), which participates in ethanol fermentation, is essential for tolerance to the anaerobic conditions caused by flooding. In a comprehensive analysis of the ADH gene family in T. distichum, TdADHs were cloned on the basis of whole-genome sequencing, and then bioinformatic analysis, subcellular localization, and gene expression level analysis under flooding were conducted. The results show that the putative protein sequences of 15 cloned genes contained seven TdADHs and eight TdADH-like genes (one Class III ADH included) that were divided into five clades. All the sequences had an ADH_N domain, and except for TdADH-likeE2, all the other genes had an ADH_zinc_N domain. Moreover, the TdADHs in clades A, B, C, and D had a similar motif composition. Additionally, the number of TdADH amino acids ranged from 277 to 403, with an average of 370.13. Subcellular localization showed that, except for TdADH-likeD3, which was not expressed in the nucleus, the other genes were predominantly expressed in both the nucleus and cytosol. TdADH-likeC2 was significantly upregulated in all three organs (roots, stems, and leaves), and TdADHA3 was also highly upregulated under 24 h flooding treatment; the two genes might play key roles in ethanol fermentation and flooding tolerance. These findings offer a comprehensive understanding of TdADHs and could provide a foundation for the molecular breeding of T. distichum and current research on the molecular mechanisms driving flooding tolerance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Long-term Scientific Research Base for Taxodium Rich Breeding and Cultivation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis, Cambridge University Press.

2. Flooding stress: Acclimations and genetic diversity;Voesenek;Annu. Rev. Plant Biol.,2008

3. Flooding and low oxygen responses in plants;Pedersen;Funct. Plant Biol.,2017

4. Regulation of Root Traits for Internal Aeration and Tolerance to Soil Waterlogging-Flooding Stress;Yamauchi;Plant Physiol.,2018

5. How plants cope with complete submergence;Voesenek;New Phytol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3