Genetic Diversity of Barley Accessions from East Asia for Greenbug Resistance

Author:

Radchenko Evgeny E.1,Abdullaev Renat A.1,Akimova Daria E.1,Anisimova Irina N.1

Affiliation:

1. N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia

Abstract

The greenbug, Schizaphis graminum, is a dangerous pest of barley and other grain crops in the south of Russia. An effective and environmentally friendly way to control this insect is to cultivate resistant varieties. The differential interaction between the phytophage and host plants necessitates the search for new donors of resistance. Seven hundred and seventy-eight accessions of barley from East Asian countries (313 from China, 450 from Japan, and 15 from Nepal) were evaluated for greenbug resistance. The Krasnodar population of the insect and clones isolated from it were used in the experiments. Forty heterogeneous accessions were identified, in which plants with a high level of resistance to the aphid were found. As a result of damage assessment by the 108 S. graminum clones of 11 lines selected from heterogeneous accessions, 52 insect virulence phenotypes were identified. Experiments with aphid test clones showed that all 11 lines possess diverse greenbug resistance alleles, which differ from the previously identified Rsg1, but their efficiency is low. The frequency of clones virulent to ten lines and the cultivar Post (a carrier of the Rsg1 gene) varies from 60.4% to 98.0%. The exception is line 15903, which is resistant to the aphid population and protected by one dominant gene. The high resistance of other lines against a part of the natural population of S. graminum is also under oligogenic control. Lines 15600 and 16190 each have one dominant resistance gene, and line 28129 is protected by two genes, the dominant and recessive ones. A recessive resistance gene is presumably present in line 15600. Lines 16237/1 and 16237/2, isolated from the same collection accession, each have one dominant gene effective against individual aphid clones. The loss of effectiveness of distinctly manifested resistance genes causes the expression of previously masked genes with a weak phenotypic manifestation, which differentially interact with insect genotypes.

Funder

N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Ministry of Science and Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3