Affiliation:
1. Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
2. Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
Abstract
Cannabis sativa L. is cultivated globally for its cannabinoid-dense inflorescences. Commercial preference for sinsemilla has led to the development of methods for producing feminized seeds through cross-pollination of cosexual (masculinized) female plants. Although the induction of cosexuality in Cannabis plants is common, to date, no work has empirically tested how masculinization of female Cannabis plants impacts male flowering, pollen production, pollen fitness, and related life-history trade-offs. Here, we cultivated a population of Cannabis plants (CFX-2) and explored how the route to cosexuality (drought vs. chemical induction) impacted flowering phenology, pollen production, and pollen fitness, relative to unsexual male plants. Unisexual males flowered earlier and longer than cosexual plants and produced 223% more total pollen (F2,28 = 74.41, p < 0.001), but per-flower pollen production did not differ across reproductive phenotypes (F2,21 = 0.887, p = 0.427). Pollen viability was 200% higher in unisexual males and drought-induced cosexuals (F2,36 = 189.70, p < 0.001). Pollen non-abortion rates only differed in a marginally significant way across reproductive phenotypes (F2,36 = 3.00, p = 0.06). Here, we demonstrate that masculinization of female plants impacts whole-plant pollen production and pollen fitness in Cannabis sativa.
Funder
Natural Sciences and Engineering Research Council of Canada
Toronto Metropolitan University
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics