Author:
Zheng Bao-Qiang,Li Xiao-Qing,Wang Yan
Abstract
Orchid flowers have a unique structure that consists of three sepals and three petals, with one of the petals forming the labellum (lip) that can be differentiated into the hypochile and epichile. In orchids, the emission of floral scent is specific and spatially complex. Little is understood about the molecular and biochemical mechanisms of the differing scent emissions between the parts of orchid flowers. Here, we investigated this in the Cattleya hybrid KOVA, and our study showed that monoterpenes, including linalool and geraniol, are the main components responsible for the KOVA floral scent. The KOVA flower was scentless to the human nose before it reached full bloom, potentially because the 1-deoxy-d-xylulose 5-phosphate synthases (RcDXSs) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthases (RcHDSs) that biosynthesize monoterpenes were highly expressed in flowers only when it reached full flowering. Additionally, the spatial expression profile of the monoterpene synthases (RcMTPSs), which were highly expressed in the basal region of the lip (hypochile), contributed to the highest monoterpene emissions from this part of the flower. This might have caused the hypochile to be more fragrant than the other parts of the flower. These findings enrich our understanding of the difference in scents between different flower parts in plants and provide information to breed novel orchid cultivars with special floral scents.
Funder
The import of important parents of Cattleya and targeted breeding technology of lip
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics