Exploring the Heat Shock Transcription Factor (HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses

Author:

Jiang Dongzhu12,Xia Maoqin1,Xing Haitao1,Gong Min3,Jiang Yajun1,Liu Huanfang4,Li Hong-Lei1

Affiliation:

1. College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China

2. College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China

3. College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China

4. Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Chongqing Municipal Agricultural Industry Technology System Seasoning Innovation Team Project

Foundation for High-level Talents of Chongqing University of Arts and Science

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3