Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera

Author:

Zhang Ge12,Zhang Zhuo3,Wan Qionglian12,Zhou Huijie12,Jiao Mengting12,Zheng Hongying12,Lu Yuwen12ORCID,Rao Shaofei12,Wu Guanwei12,Chen Jianping12ORCID,Yan Fei12ORCID,Peng Jiejun12ORCID,Wu Jian12

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China

2. Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China

3. Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

Abstract

Quantitative real-time PCR (RT-qPCR) is a widely used method for studying alterations in gene expression upon infections caused by diverse pathogens such as viruses. Positive-sense single-stranded (ss(+)) RNA viruses form a major part of all known plant viruses, and some of them are damaging pathogens of agriculturally important crops. Analysis of gene expression following infection by ss(+) RNA viruses is crucial for the identification of potential anti-viral factors. However, viral infections are known to globally affect gene expression and therefore selection and validation of reference genes for RT-qPCR is particularly important. In this study, the expression of commonly used reference genes for RT-qPCR was studied in Nicotiana benthamiana following single infection by 11 ss(+) RNA viruses, including five tobamoviruses, four potyviruses, one potexvirus and one polerovirus. Stability of gene expression was analyzed in parallel by four commonly used algorithms: geNorm, NormFinder, BestKeeper, and Delta CT, and RefFinder was finally used to summarize all the data. The most stably expressed reference genes differed significantly among the viruses, even when those viruses were from the same genus. Our study highlights the importance of the selection and validation of reference genes upon different viral infections.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3