Predicting Maize Theoretical Methane Yield in Combination with Ground and UAV Remote Data Using Machine Learning

Author:

Kavaliauskas Ardas1,Žydelis Renaldas1ORCID,Castaldi Fabio2ORCID,Auškalnienė Ona1,Povilaitis Virmantas1

Affiliation:

1. Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania

2. Institute of BioEconomy, National Research Council of Italy (CNR), Via Giovanni Caproni 8, 50145 Firenze, Italy

Abstract

The accurate, timely, and non-destructive estimation of maize total-above ground biomass (TAB) and theoretical biochemical methane potential (TBMP) under different phenological stages is a substantial part of agricultural remote sensing. The assimilation of UAV and machine learning (ML) data may be successfully applied in predicting maize TAB and TBMP; however, in the Nordic-Baltic region, these technologies are not fully exploited. Therefore, in this study, during the maize growing period, we tracked unmanned aerial vehicle (UAV) based multispectral bands (blue, red, green, red edge, and infrared) at the main phenological stages. In the next step, we calculated UAV-based vegetation indices, which were combined with field measurements and different ML models, including generalized linear, random forest, as well as support vector machines. The results showed that the best ML predictions were obtained during the maize blister (R2)–Dough (R4) growth period when the prediction models managed to explain 88–95% of TAB and 88–97% TBMP variation. However, for the practical usage of farmers, the earliest suitable timing for adequate TAB and TBMP prediction in the Nordic-Baltic area is stage V7–V10. We conclude that UAV techniques in combination with ML models were successfully applied for maize TAB and TBMP estimation, but similar research should be continued for further improvements.

Funder

Joint Call of the Cofund ERA-Nets SusCrop

FACCE ERA-GAS

ICT-AGRI-FOOD

SusAn

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3