Genome-Wide Identification and Abiotic-Stress-Responsive Expression of CKX Gene Family in Liriodendron chinense

Author:

Sun Xiao12ORCID,Zhu Liming12,Hao Zhaodong12ORCID,Wu Weihuang12ORCID,Xu Lin12,Yang Yun12,Zhang Jiaji12,Lu Ye12,Shi Jisen12ORCID,Chen Jinhui12

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China

Abstract

Liriodendron chinense is a tree species of the Magnoliaceae family, an ancient relict plant mainly used for landscaping and timber production due to its excellent material properties and ornamental value. The cytokinin oxidase/dehydrogenase (CKX) enzyme regulates cytokinin levels and plays an important role in plant growth, development, and resistance. However, too-high or too-low temperatures or soil drought can limit the growth of L. chinense, representing a key issue for research. Here, we identified the CKX gene family in the L. chinense genome and examined its transcriptional responses to cold, drought, and heat stresses. A total of five LcCKX genes, distributed on four chromosomes and divided into three phylogenetic groups, were identified across the whole L. chinense genome. Further analysis showed that multiple hormone- and stress-responsive cis-acting elements are located in the promoter regions of LcCKXs, indicating a potential role of these LcCKXs in plant growth, development, and response to environmental stresses. Based on existing transcriptome data, LcCKXs, especially LcCKX5, were found to transcriptionally respond to cold, heat, and drought stresses. Furthermore, quantitative reverse-transcription PCR (qRT-PCR) showed that LcCKX5 responds to drought stress in an ABA-dependent manner in stems and leaves and in an ABA-independent manner in roots. These results lay a foundation for functional research on LcCKX genes in the resistance breeding of the rare and endangered tree species of L. chinense.

Funder

National Key Research and Development Program of China during the 14th Five-year Plan Period

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3