Analysis of MsTERT Gene Expression Profile in Alfalfa (Medicago sativa) Indicates Their Response to Abiotic Stress and Seed Aging

Author:

Sun Shoujiang1ORCID,Ma Wen1,Mao Peisheng1ORCID

Affiliation:

1. Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China

Abstract

Seed aging is always taken as a crucial factor for vigor loss due to delayed seed germination and seedling growth, which limits hay production. Many studies have found that telomeres are closely related to abiotic stress and seed vigor. However, the molecular mechanism of telomeres’ response to abiotic stress, seed vigor, and the maintenance mechanism of plant telomere homeostasis still remain unclear. Alfalfa (Medicago sativa) enjoys the title of “King of Forage”, and is an important protein forage for the dairy industry as planted in the world. This comprehensive investigation was performed to explore the molecular characterization, phylogenetic relationship, and gene expression analysis of MsTERT under abiotic stress and during seed aging in alfalfa. In this study, MsTERT was identified from the ‘Zhongmu 1’ alfalfa genome and encoded a coding sequence (CDS) of 3615 bp in length, consisting of telomerase- RNA-Binding Domain (RBD) and Reverse Transcriptase (RT) domains, 1024 amino acids, an isoelectric point of 9.58, and a relative molecular mass of 138.94 kD. Subcellular localization showed that MsTERT was mainly localized in the nucleus and mitochondria. The results of the expression profile showed that MsTERT was observed to respond to various stress conditions such as salt (100 mmol/L NaCl) and drought (20% PEG 6000). Furthermore, exogenous hormones IAA, ABA, and GA3 showed the potential to affect MsTERT expression. Additionally, MsTERT also responded to seed aging. Our results revealed a marginal but significant association between relative telomere length, MsTERT expression, and seed germination percentage, suggesting that the length of telomeres was shortened, and expression of MsTERT decreased with alfalfa seed aged. These results provide some evidence for the hypothesis of relative telomere length and/or TERT expression serving as biomarkers of seed aging. Although this finding is helpful to offer a new way to elucidate the molecular mechanism of vigor loss in alfalfa seed, further investigation is required to elucidate the molecular mechanism by which the MsTERT gene regulates seed vigor.

Funder

National Natural Science Foundation

earmarked fund for CARS

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference28 articles.

1. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity;Wang;Int. J. Biol. Macromol.,2013

2. Pinning down loose ends: Mapping telomeres and factors affecting their length;Burr;Plant Cell,1992

3. Cloning yeast telomeres on linear plasmid vectors;Szostak;Cell,1982

4. Telomere shortening: The main mechanism of natural and radiation aging;Mikhelson;Biophysics,2010

5. Progress in Human and Tetrahymena Telomerase Structure Determination;Chan;Annu. Rev. Biophys.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3