Rosmarinic Acid Production from Origanum dictamnus L. Root Liquid Cultures In Vitro

Author:

Sarropoulou Virginia,Paloukopoulou Charikleia,Karioti AnastasiaORCID,Maloupa Eleni,Grigoriadou KaterinaORCID

Abstract

In the present work Origanum dictamnus L. was studied as a suitable in vitro adventitious root culture system for the production of important bioactive molecules, such as rosmarinic acid (RA). Callus culture was initiated from leaf, petiole and root explants on solid MS medium supplemented with either 5 μM NAA + 5 μM kinetin (ODK3) or 5 μM NAA + 0.5 μM kinetin (ODK4). New roots formed from leaf, petiole and root calluses were aseptically transferred into Erlenmeyer flasks containing 100 mL liquid medium and shaken at 120 rpm in the dark. The liquid medium used was the MS supplemented either with 35 μM IBA + 2.5 μM kinetin (ODY1) or 5 μM NAA + 0.5 μM kinetin (ODY2). Biomass production parameters, RA content (%) and yield index (YI) were recorded for each treatment explant type, medium composition and incubation period. Results showed, in every case, the production of RA in vitro. Between the two liquid media (ODY1, ODY2) and the different culture periods, the ODY1 medium and the longest 200-day-culture period were more effective for RA and biomass production, regardless of the initial explant type used. The combination of ODK4-ODY1 resulted in higher RA (5.1% and 4.7%), fresh biomass production (19.0 g and 11.6 g), mean YI (93.7 mg and 51.4 mg) and YI per explant (3.75 mg and 2.06 mg) for roots derived from leaf calluses and root calluses, respectively. However, the solid ODK3 (200 days)–liquid ODY1 (40 days) transition treatment was more beneficial for roots derived from petiole calluses leading to an 18.8-fold increase in fresh biomass growth rate. RA accumulation and YIs were also significantly influenced by explant type, with the highest value produced from root petiole calluses (6.6% RA dry weight, 115.3 mg mean YI and 4.61 mg YI per explant) after 240 days.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3