Transcriptome Analysis Reveals a Major Gene Expression Pattern and Important Metabolic Pathways in the Control of Heterosis in Chinese Cabbage

Author:

Li Ru1,Nie Shanshan1,Zhang Ning1,Tian Min1,Zhang Lugang1

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Xianyang 712100, China

Abstract

Although heterosis is commonly used in Chinese cabbage, its molecular basis is poorly understood. In this study, 16Chinese cabbage hybrids were utilized as test subjects to explore the potential molecular mechanism of heterosis. RNA sequencing revealed 5815–10,252 differentially expressed genes (DEGs) (female parent vs. male parent), 1796–5990 DEGs (female parent-vs-hybrid), and 2244–7063 DEGs (male parent vs. hybrid) in 16 cross combinations at the middle stage of heading. Among of them, 72.83–84.20% DEGs conformed to the dominant expression pattern, which is the predominant expression pattern in hybrids. There were 13 pathways in which DEGs were significantly enriched in most cross combinations. Among them, the plant–pathogen interaction (ko04626) and circadian rhythm-plant (ko04712)were significantly enriched by DEGs in strong heterosis hybrids. WGCNA also proved that the two pathways were significantly related to heterosis in Chinese cabbage.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Yangling Seed Innovative Center

Key Research and Development Program of Shaanxi Province

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid;International Journal of Molecular Sciences;2023-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3