Affiliation:
1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2. Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
Abstract
In the North China Plain, the excessive application of nitrogen (N) fertilizer for ensuring high yield and a single application at sowing for simplifying management in farmer practice lead to low N use efficiency and environmental risk in maize (Zea mays L.) production. However, it is unclear whether and how late split application with a lower level of N fertilizer influences maize yield. To address this question, a two-year field experiment was conducted with two commercial maize cultivars (Zhengdan 958 and Denghai 605) using a lower level of N input (180 kg ha−1) by setting up single application at sowing and split application at sowing and later stages (V12, R1, and R2) with four different ratios, respectively. The maize yield with split-applied 180 kg ha−1 N did not decrease compared to the average yield with 240 kg ha−1 N input in farmer practice, while it increased by 6.7% to 11.5% in the four N split-application treatments compared with that of the single-application control. Morphological and physiological analyses demonstrated that late split application of N (i) increased the net photosynthetic rate and chlorophyll content and thus promoted the photosynthetic efficiency during the reproductive stages; (ii) promoted the sink capacity via improved kernel number, endosperm cells division, and grain-filling rate; and (iii) increased the final N content and N efficiency in the plant. Therefore, we propose that late split application of N could reduce N fertilizer input and coordinately improve N efficiency and grain yield in summer maize production, which are likely achieved by optimizing the source–sink relations during the grain-filling stage.
Funder
CARS
National Key Research and Development Program of China
2115 Talent Development Program of China Agricultural University
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献