Influence of Fertilization on Growth and Lead Content of Pepper under Lead Stress

Author:

Yu Bingkun1,Xu Dongying1,Li Yang1,Wang Wenquan1

Affiliation:

1. College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

To investigate the effect of fertilization on Pb content in vegetables, pepper was planted in L1645 (the 5 influencing factors are fertilizers (N, P, K), organic fertilizers (sheep manure) and Pb2+; the 4 levels are blank, low, medium and high; a total of 16 treatments) pot orthogonal experiment. The effects of fertilizers on the growth and Pb content in various parts of pepper under Pb stress were analyzed. The results showed that: (1) The Pb content in pepper fruit ranged from 0.011 mg·kg−1 to 0.085 mg·kg−1, which did not exceed the limit value (0.1 mg·kg−1) in the National Standard for Food Safety-Limit of Contaminants in Food (GB2762-2017); (2) The effect order of fertilization on pepper fruit weight was P2O5 > sheep manure > N > K2O; The horizontal combination of factors that promoted the maximum fruit weight of pepper was N (0.15 g·kg−1), P2O5 (0.225 g·kg−1), K2O (0.15 g·kg−1) and sheep manure (9 g·kg−1); (3) The order of fertilizer effects on Pb content in pepper fruit was Pb2+ > K2O > N = sheep manure > P2O5; the factor level combination that resulted in the maximum Pb content in pepper fruits was N (0.15 g·kg−1), P2O5 (0 g·kg−1), K2O (0.45 g·kg−1), sheep manure (6 g·kg−1) and Pb2+ (350 mg·kg−1); (4) Based on the soil fertility characteristics of Urumqi, the recommended optimal fertilizer application rate was: high phosphorus fertilizer P2O5 (495 kg·hm−2), low-level potassium fertilizer K2O (330 kg·hm−2), medium-level nitrogen fertilizer N (660 kg·hm−2) (or low-level nitrogen fertilizer N (330 kg·hm−2) + high-level organic manure sheep manure (19,800 kg·hm−2), which can achieve high yield while ensuring that the Pb content in the fruits does not exceed the standard. Strengthening control of effective and reasonable fertilization methods in Urumqi agricultural land is helpful to reduce the Pb content in vegetables.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3