Affiliation:
1. School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
2. The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
3. School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China
Abstract
Abscisic acid (ABA), a phytohormone, enacts a cardinal function in coping with abiotic stress. 14-3-3 proteins can interact with ABA-responsive-element-binding transcription factors (ABFs), a chief constituent of ABA signaling, and play critical roles in the dehydration response involving ABA signaling. Meanwhile, whether and how 14-3-3 proteins regulate ABA signaling to respond to aridity stress is yet to be fully investigated. Herein, BdGF14g, a 14-3-3 gene induced by ABA, H2O2, and PEG treatments, was identified in Brachypodium distachyon (B. distachyon). Overexpression of BdGF14g improved drought stress tolerance in tobacco plants, with a higher survival rate, longer root length, enhanced cell membrane stability, and increased antioxidase activity compared with non-transgenic controls in coping with dehydration. Both drought and exogenous ABA treatments resulted in smaller stomatal apertures in BdGF14g-transgenic lines. Additionally, when an ABA biosynthesis inhibitor was added, the better growth statuses, less H2O2 accumulation, and higher activities of catalase and superoxide dismutase under mannitol stress disappeared. Moreover, BdGF14g interacted with NtABF2, upregulated the endogenous ABA content, and enhanced the transcription of ABA-related genes, including NtNCED1, a crucial ABA biosynthesis gene, under drought conditions. In conclusion, BdGF14g acts as a positive factor in the water deficiency response by affecting ABA biosynthesis and signaling in tobacco plants.
Funder
National Genetically Modified New Varieties of Major Projects of China
National Natural Science Foundation of China
Key Scientific and Technological Research Project of Henan Province
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献