Water Metabolism of Lonicera japonica and Parthenocissus quinquefolia in Response to Heterogeneous Simulated Rock Outcrop Habitats

Author:

Zhao Xiaopan1,Wu Yanyou2ORCID,Xing Deke1ORCID,Li Haitao3,Zhang Furong1

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

3. Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China

Abstract

The karst carbon sink caused by rock outcrops results in enrichment of the bicarbonate in soil, affecting the physiological process of plants in an all-round way. Water is the basis of plant growth and metabolic activities. In heterogeneous rock outcrop habitats, the impact of bicarbonate enrichment on the intracellular water metabolism of plant leaf is still unclear, which needs to be revealed. In this paper, the Lonicera japonica and Parthenocissus quinquefolia plants were selected as experimental materials, and electrophysiological indices were used to study their water holding, transfer and use efficiency under three simulated rock outcrop habitats, i.e., rock/soil ratio as 1, 1/4 and 0. By synchronously determining and analyzing the leaf water content, photosynthetic and chlorophyll fluorescence parameters, the response characteristics of water metabolism within leaf cells to the heterogeneous rock outcrop habitats were revealed. The results showed that the soil bicarbonate content in rock outcrop habitats increased with increasing rock/soil ratio. Under the treatment of a higher concentration of bicarbonate, the leaf intra- and intercellular water acquisition and transfer efficiency as well as the photosynthetic utilization capacity of P. quinquefolia decreased, the leaf water content was lower, and those plants had low bicarbonate utilization efficiency, which greatly weakened their drought resistance. However, the Lonicera japonica had a high bicarbonate use capacity when facing the enrichment of bicarbonate within cells, the above-mentioned capacity could significantly improve the water status of the leaves, and the water content and intracellular water-holding capacity of plant leaves in large rock outcrop habitats were significantly better than in non-rock outcrop habitats. In addition, the higher intracellular water-holding capacity was likely to maintain the stability of the intra- and intercellular water environment, thus ensuring the full development of its photosynthetic metabolic capacity, and the stable intracellular water-use efficiency also made itself more vigorous under karstic drought. Taken together, the results suggested that the water metabolic traits of Lonicera japonica made it more adaptable to karst environments.

Funder

Support Plan Projects of Science and Technology of Guizhou Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3