Affiliation:
1. Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China
Abstract
Sugar transport from the source leaf to the sink organ is critical for seed development and crop yield, as well as for responding to abiotic stress. SWEETs (sugar will eventually be exported transporters) mediate sugar efflux into the reproductive sink and are therefore considered key candidate proteins for sugar unloading during seed development. However, the specific mechanism underlying the sugar unloading to seeds in Camellia oleifera remains elusive. Here, we identified a SWEET gene named CoSWEET10, which belongs to Clade III and has high expression levels in the seeds of C. oleifera. CoSWEET10 is a plasma membrane-localized protein. The complementation assay of CoSWEET10 in SUSY7/ura3 and EBY.VW4000 yeast strains showed that CoSWEET10 has the ability to transport sucrose, glucose, and fructose. Through the C. oleifera seeds in vitro culture, we found that the expression of CoSWEET10 can be induced by hexose and sucrose, and especially glucose. By generating the restoration lines of CoSWEET10 in Arabidopsis atsweet10, we found that CoSWEET10 restored the seed defect phenotype of the mutant by regulating soluble sugar accumulation and increased plant drought tolerance. Collectively, our study demonstrates that CoSWEET10 plays a dual role in promoting seed development and enhancing plant drought resistance as a sucrose and hexose transporter.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献