Genomic Analysis of Leptolyngbya boryana CZ1 Reveals Efficient Carbon Fixation Modules

Author:

Bai Xiaohui1ORCID,Wang Honghui2,Cheng Wenbin3,Wang Junjun1,Ma Mengyang1,Hu Haihang1,Song Zilong1,Ma Hongguang1,Fan Yan14,Du Chenyu1ORCID,Xu Jingcheng1

Affiliation:

1. College of Life and Environment Science, Huangshan University, Huangshan 245041, China

2. Huangshan Institute of Product Quality Inspection, Huangshan 245000, China

3. School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

4. School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

Cyanobacteria, one of the most widespread photoautotrophic microorganisms on Earth, have evolved an inorganic CO2-concentrating mechanism (CCM) to adapt to a variety of habitats, especially in CO2-limited environments. Leptolyngbya boryana, a filamentous cyanobacterium, is widespread in a variety of environments and is well adapted to low-inorganic-carbon environments. However, little is currently known about the CCM of L. boryana, in particular its efficient carbon fixation module. In this study, we isolated and purified the cyanobacterium CZ1 from the Xin’anjiang River basin and identified it as L. boryana by 16S rRNA sequencing. Genome analysis revealed that L. boryana CZ1 contains β-carboxysome shell proteins and form 1B of Rubisco, which is classify it as belonging to the β-cyanobacteria. Further analysis revealed that L. boryana CZ1 employs a fine CCM involving two CO2 uptake systems NDH-13 and NDH-14, three HCO3− transporters (SbtA, BicA, and BCT1), and two carboxysomal carbonic anhydrases. Notably, we found that NDH-13 and NDH-14 are located close to each other in the L. boryana CZ1 genome and are back-to-back with the ccm operon, which is a novel gene arrangement. In addition, L. boryana CZ1 encodes two high-affinity Na+/HCO3− symporters (SbtA1 and SbtA2), three low-affinity Na+-dependent HCO3− transporters (BicA1, BicA2, and BicA3), and a BCT1; it is rare for a single strain to encode all three bicarbonate transporters in such large numbers. Interestingly, L. boryana CZ1 also uniquely encodes two active carbonic anhydrases, CcaA1 and CcaA2, which are also rare. Taken together, all these results indicated that L. boryana CZ1 is more efficient at CO2 fixation. Moreover, compared with the reported CCM gene arrangement of cyanobacteria, the CCM-related gene distribution pattern of L. boryana CZ1 was completely different, indicating a novel gene organization structure. These results can enrich our understanding of the CCM-related gene arrangement of cyanobacteria, and provide data support for the subsequent improvement and increase in biomass through cyanobacterial photosynthesis.

Funder

Anhui Provincial Natural Science Foundation

Excellent Top-Notch Talent Project of Anhui Province

Huangshan University

College Student’s Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3