Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism

Author:

Kasemsap PornpipatORCID,Bloom Arnold J.ORCID

Abstract

Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.

Funder

United States Department of Agriculture

National Science Foundation

University of California, Davis

Thailand – United States Educational Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference214 articles.

1. Bloom, A.J. (2010). Annual Plant Reviews Volume 42, Wiley-Blackwell.

2. The Most Abundant Protein in the World;Ellis;Trends Biochem. Sci.,1979

3. Photorespiration and Nitrate Assimilation: A Major Intersection between Plant Carbon and Nitrogen;Bloom;Photosynth. Res.,2015

4. Plant Nitrogen Assimilation and Use Efficiency;Xu;Annu. Rev. Plant Biol.,2012

5. Analysis of Historical Selection in Winter Wheat;Yang;Theor. Appl. Genet.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3