First Report on the Synergistic Interaction between Essential Oils against the Pinewood Nematode Bursaphelenchus xylophilus

Author:

Faria Jorge M. S.12ORCID,Cavaco Tomás13ORCID,Gonçalves Diogo14,Barbosa Pedro2,Teixeira Dora Martins56ORCID,Moiteiro Cristina4,Inácio Maria L.17ORCID

Affiliation:

1. INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal

2. MED, Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

3. Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-107 Lisboa, Portugal

4. Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

5. HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal

6. Science and Technology School, Évora University, Rua Romão Ramalho nº 59, 7000-671 Évora, Portugal

7. GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal

Abstract

Control of the pinewood nematode (PWN), the causal agent of pine wilt disease, can be achieved through the trunk injection of nematicides; however, many pesticides have been linked to environmental and human health concerns. Essential oils (EOs) are suitable alternatives due to their biodegradability and low toxicity to mammals. These complex mixtures of plant volatiles often display multiple biological activities and synergistic interactions between their compounds. The present work profiled the toxicity of eight EOs against the PWN in comparison to their 1:1 mixtures, to screen for successful synergistic interactions. Additionally, the main compounds of the most synergistic mixtures were characterized for their predicted environmental fate and toxicity to mammals in comparison to emamectin benzoate, a commercial nematicide used against PWN. The mixtures of Cymbopogon citratus with Mentha piperita and of Foeniculum vulgare with Satureja montana EOs showed the highest activities, with half-maximal effective concentrations (EC50) of 0.09 and 0.05 µL/mL, respectively. For these, complete PWN mortality was reached after only ca. 15 min or 2 h of direct contact, respectively. Their major compounds had a higher predicted affinity to air and water environmental compartments and are reported to have very low toxicity to mammals, with low acute oral and dermal toxicities. In comparison, emamectin benzoate showed lower nematicidal activity, a higher affinity to the soil and sediments environmental compartments and higher reported oral and dermal toxicity to mammals. Overall, uncovering synergistic activities in combinations of EOs from plants of different families may prove to be a source of biopesticides with optimized toxicity against PWNs.

Funder

Fundação para a Ciência e a Tecnologia

national funds

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3