Abstract
The impact of increasing drought periods on crop yields as a result of global climate change is a major concern in modern agriculture. Thus, a greater understanding of crop physiological responses under drought stress can guide breeders to develop new cultivars with enhanced drought tolerance. In this study, selected chromosome segment substitution lines of KDML105 (KDML105-CSSL) were grown in the Plant Phenomics Center of Kasetsart University in Thailand under well-watered and drought-stressed conditions. Physiological traits were measured by observing gas exchange dynamics and using a high-throughput phenotyping platform. Furthermore, because of its impact on plant internal gas and water regulation, stomatal morphological trait variation was recorded. The results show that KDML105-CSS lines exhibited plasticity responses to enhance water-use efficiency which increased by 3.62%. Moreover, photosynthesis, stomatal conductance and transpiration decreased by approximately 40% and plant height was reduced by 17.69%. Stomatal density tended to decrease and was negatively correlated with stomatal size, and stomata on different sides of the leaves responded differently under drought stress. Under drought stress, top-performing KDML105-CSS lines with high net photosynthesis had shorter plant height and improved IWUE, as influenced by an increase in stomatal density on the upper leaf side and a decrease on the lower leaf side.
Funder
Innovation for Sustainable Agriculture (ISA) Rainfed Lowland Project, NSTDA, Thailand
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference56 articles.
1. Temperature increase reduces global yields of major crops in four independent estimeates;Zhao;PNAS,2017
2. Future water availability for global food production: The potential of green water for increasing resilience to global change;Falkenmark;Water Resour. Res.,2009
3. Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8.
4. Adaptation to future water shortages in the United States caused by population growth and climate change;Brown;Earths Future,2019
5. Whole plant responses, key processes, and adaptation to drought stress: The case of rice;Lafitte;J. Exp. Bot.,2007
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献