Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics

Author:

Li Nana12,Cao Yue12,Wu Jinghui3,Zhang Ting12,Zou Xianhua2,Ma Xiangqing12,Wu Pengfei12ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China

3. Fujian Shanghang Baisha Forestry Farm, Longyan 364205, China

Abstract

The calorific value and construction cost of leaves reflect the utilization strategy of plants for environmental resources. Their genetic characteristics and leaf functional traits as well as climate change affect the calorific values. This study explores the differences in energy investment strategies and the response characteristics of energy utilization in leaves to climate change among nine clones of Chinese fir (Cunninghamia lanceolata). Considering the objectives, the differences in the energy utilization strategies were analyzed by determining the leaf nutrients, specific leaf area, and leaf calorific value and by calculating the construction cost. The results showed a significant difference in the ash-free calorific value and construction cost of leaves among different Chinese fir clones (p < 0.05). There were also significant differences in leaf carbon (C) content, leaf nitrogen (N) content, specific leaf area, and ash content. The correlation analysis showed that leaves’ ash-free calorific value and construction cost were positively correlated with the C content. Principal component analysis (PCA) showed that P2 is inclined to the “fast investment return” energy investment strategy, while L27 is inclined to the “slow investment return” energy investment strategy. Redundancy analysis (RDA) indicates that the monthly average temperature strongly correlates positively with leaf construction cost, N content, and specific leaf area. The monthly average precipitation positively impacts the ash-free calorific value and construction cost of leaves. In conclusion, there are obvious differences in energy investment strategies among different Chinese fir clones. When temperature and precipitation change, Chinese fir leaves can adjust their energy investment to adapt to environmental changes. In the future, attention should be paid to the impact of climate change–related aspects on the growth and development of Chinese fir plantations.

Funder

National Key Research and Development Project of China

Fujian Provincial Natural Science Foundation of China

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3