Effects of Inoculation with Stress-Tolerant Rhizobia on the Response of Alfalfa (Medicago sativa L.) to Combined Salinity and Cadmium Stress

Author:

Pacheco-Insausti M. Cecilia12ORCID,Ponce Ivana Tamara2,Quiñones Miguel A.1ORCID,Pedranzani Hilda E.2ORCID,Pueyo José J.1ORCID

Affiliation:

1. Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain

2. Laboratorio de Fisiología Vegetal, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis D5700HOI, Argentina

Abstract

Agricultural soil salinization, which is often combined with heavy-metal contamination, is an ever-growing problem in the current era of global change. Legumes have a high potential for nitrogen fixation and are ideal crops for the reclamation of degraded soils. Alfalfa (Medicago sativa) is a valuable forage crop cultivated worldwide. Alfalfa plants fertilized with nitrogen or inoculated with a salt- and cadmium-tolerant Sinorhizobium meliloti strain were subjected to combined NaCl and CdCl2 stresses. Our results showed that inoculated plants presented higher aerial biomass than nitrogen-fertilized plants when they were exposed to salinity and cadmium together. To assess the mechanisms involved in the plant response to the combined stresses, superoxide dismutase and catalase antioxidant enzymatic activities were determined. Both increased upon stress; however, the increase in catalase activity was significantly less marked for inoculated plants, suggesting that other tolerance mechanisms might be active. Cd accumulation was lower in inoculated plants than in fertilized plants, which appears to imply that inoculation somehow prevented cadmium uptake by the plant roots. Expression analyses of several involved genes suggested that inoculation stimulated the biosynthesis of proline, phytochelatins, and homophytochelatins, together indicating that inoculated plants might be better suited to withstand combined salinity and cadmium stress effects.

Funder

the Secretary of Science and Technology, Argentine

the Agencia Estatal de Investigación, AEI, Spain

the Agencia Estatal Consejo Superior de Investigaciones Científicas, CSIC, Spain

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3