Affiliation:
1. College of Horticulture, Northwest A & F University, Xianyang 712100, China
2. Ningxia Academy of Agriculture and Forestry Science, Institute of Horticulture, Yinchuan 750002, China
Abstract
Flower bud formation in the apple tree life cycle is associated with multiple biological processes. To explore the physiological and molecular mechanisms underlying the protein and metabolite changes in buds with different flowering capabilities, axillary buds with no flowering (Ab), long-shoot buds with a low flowering rate (Lb), and spur buds with a higher flowering rate than the Lb (Sb) were analyzed using a Tandem Mass Tag™ proteomic technique in combination with nLC–MS/MS analyses. We identified 471 (88 up- and 383 down-regulated), 459 (176 up- and 283 down-regulated), and 548 (387 up- and 161 down-regulated) differentially expressed proteins in Sb vs. Lb, Sb vs. Ab, and Lb vs. Ab, respectively, that were involved in carbohydrate, amino acid and lipid transport, and metabolism. Additionally, 110 (91 increased and 19 decreased), 89 (71 increased and 18 decreased), and 99 (37 increased and 62 decreased) metabolites having significantly different levels were identified in Sb vs. Lb, Sb vs. Ab, and Lb vs. Ab, respectively. The identified metabolites were related to amino acids and their isoforms, sugars and polyols, and organic acids, and occurred at significantly greater levels in the Sbs than the other buds. Thus, flower bud formation is a complex process that involves various biochemical materials and signals, such as carbohydrates, amino acids and their isoforms, and organic acids.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Key Research and Development Project of Ningxia Hui Autonomous Region
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics