Evolutionary Analysis of the Melon (Cucumis melo L.) GH3 Gene Family and Identification of GH3 Genes Related to Fruit Growth and Development

Author:

Chen Sheng1,Zhong Kaiqin2,Li Yongyu3,Bai Changhui4,Xue Zhuzheng4,Wu Yufen1

Affiliation:

1. Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China

2. Fuzhou Institute of Vegetable Science, Fuzhou 350018, China

3. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

Abstract

The indole-3-acetic acid (IAA) auxin is an important endogenous hormone that plays a key role in the regulation of plant growth and development. In recent years, with the progression of auxin-related research, the function of the Gretchen Hagen 3 (GH3) gene has become a prominent research topic. However, studies focusing on the characteristics and functions of melon GH3 family genes are still lacking. This study presents a systematic identification of melon GH3 gene family members based on genomic data. The evolution of melon GH3 family genes was systematically analyzed by means of bioinformatics, and the expression patterns of the GH3 family genes in different melon tissues during different fruit developmental stages and with various levels of 1-naphthaleneacetic acid (NAA) induction were analyzed with transcriptomics and RT-qPCR. The melon genome contains 10 GH3 genes distributed across seven chromosomes, and most of these genes are expressed in the plasma membrane. According to evolutionary analysis and the number of GH3 family genes, these genes can be divided into three subgroups, and they have been conserved throughout the evolution of melon. The melon GH3 gene has a wide range of expression patterns across distinct tissue types, with expression generally being higher in flowers and fruit. Through promoter analysis, we found that most cis-acting elements contained light- and IAA-responsive elements. Based on the RNA-seq and RT-qPCR analyses, it can be speculated that CmGH3-5, CmGH3-6 and CmGH3-7 may be involved in the process of melon fruit development. In conclusion, our findings suggest that the GH3 gene family plays an important role in the development of melon fruit. This study provides an important theoretical basis for further research on the function of the GH3 gene family and the molecular mechanism underlying the development of melon fruit.

Funder

Special Funds for Public Scientific Research Institution of Fujian Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3