Genome-Wide Identification and Analysis of the WNK Kinase Gene Family in Upland Cotton

Author:

Zhang Qi1,Zhang Caidie1,Pan Zhenyuan1,Lin Hairong1,Li Zhibo1,Hou Xinhe2,Liu Jinshan2,Nie Xinhui1,Wu Yuanlong1ORCID

Affiliation:

1. Key Laboratory of Oasis Ecology Agriculture, Xinjiang Production and Construction Crops, Agricultural College, Shihezi University, Shihezi 832003, China

2. Xinjiang Production and Construction Corps Seed Management Station, Urumqi 830011, China

Abstract

With-No-Lysine (WNK) kinases are a subfamily of serine/threonine protein kinases. WNKs are involved in plant abiotic stress response and circadian rhythms. However, members of the WNK subfamily and their responses to abiotic and biotic stresses in Gossypium hirsutum have not been reported. In this study, 26 GhWNKs were identified in G. hirsutum. The gene structure, conserved motifs, and upstream open reading frames (uORFs) of GhWNKs were identified. Moreover, GhWNKs regulation is predicted to be regulated by cis-acting elements, such as ABA responsive element (ABRE), MBS, and MYC. Furthermore, transcription factors including MIKC_MADS, C2H2, TALE, bZIP, Dof, MYB, bHLH, and HD-ZIP are projected to play a regulatory role in GhWNKs. The expression patterns of GhWNKs under normal conditions and biotic and abiotic stresses were evaluated, and their expression was found to vary. The expression patterns of several GhWNKs were induced by infiltration with Verticillium dahliae, suggesting that several GhWNKs may play important roles in the response of cotton to V. dahliae. Interestingly, a homoeologous expression bias within the GhWNKs was uncovered in upland cotton. Homoeologous expression bias within GhWNKs provides a framework to assist researchers and breeders in developing strategies to improve cotton traits by manipulating individual or multiple homeologs.

Funder

the “Tianchi Talents” Introduction Plan

the Shihezi University Youth Innovative Talent Program

the Major Science and Technology Fund Project of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3