A Study of GUS Expression in Arabidopsis as a Tool for the Evaluation of Gene Evolution, Function and the Role of Expression Derived from Gene Duplication

Author:

Bruno Leonardo1ORCID,Ronchini Matteo2ORCID,Binelli Giorgio3ORCID,Muto Antonella1ORCID,Chiappetta Adriana1,Bitonti Maria Beatrice1,Gerola Paolo2

Affiliation:

1. Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy

2. Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, 21100 Varese, Italy

3. Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy

Abstract

Gene duplication played a fundamental role in eukaryote evolution and different copies of a given gene can be present in extant species, often with expressions and functions differentiated during evolution. We assume that, when such differentiation occurs in a gene copy, this may be indicated by its maintenance in all the derived species. To verify this hypothesis, we compared the histological expression domains of the three β-glucuronidase genes (AtGUS) present in Arabidopsis thaliana with the GUS evolutionary tree in angiosperms. We found that AtGUS gene expression overlaps in the shoot apex, the floral bud and the root hairs. In the root apex, AtGUS3 expression differs completely from AtGUS1 and AtGUS2, whose transcripts are present in the root cap meristem and columella, in the staminal cell niche, in the epidermis and in the proximal cortex. Conversely, AtGUS3 transcripts are limited to the old border-like cells of calyptra and those found along the protodermal cell line. The GUS evolutionary tree reveals that the two main clusters (named GUS1 and GUS3) originate from a duplication event predating angiosperm radiation. AtGUS3 belongs to the GUS3 cluster, while AtGUS1 and AtGUS2, which originate from a duplication event that occurred in an ancestor of the Brassicaceae family, are found together in the GUS1 cluster. There is another, previously undescribed cluster, called GUS4, originating from a very ancient duplication event. While the copy of GUS4 has been lost in many species, copies of GUS3 and GUS1 have been conserved in all species examined.

Funder

Università degli Studi dell’Insubria

Università della Calabria

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3