Two Arabidopsis Splicing Factors, U2AF65a and U2AF65b, Differentially Control Flowering Time by Modulating the Expression or Alternative Splicing of a Subset of FLC Upstream Regulators

Author:

Lee Hee Tae1,Park Hyo-Young1,Lee Keh Chien1ORCID,Lee Jeong Hwan2,Kim Jeong-Kook1

Affiliation:

1. Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

2. Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea

Abstract

We investigated the transcriptomic changes in the shoot apices during floral transition in Arabidopsis mutants of two closely related splicing factors: AtU2AF65a (atu2af65a) and AtU2AF65b (atu2af65b). The atu2af65a mutants exhibited delayed flowering, while the atu2af65b mutants showed accelerated flowering. The underlying gene regulatory mechanism of these phenotypes was unclear. We performed RNA-seq analysis using shoot apices instead of whole seedlings and found that the atu2af65a mutants had more differentially expressed genes than the atu2af65b mutants when they were compared to wild type. The only flowering time gene that was significantly up- or down-regulated by more than two-fold in the mutants were FLOWERING LOCUS C (FLC), a major floral repressor. We also examined the expression and alternative splicing (AS) patterns of several FLC upstream regulators, such as COOLAIR, EDM2, FRIGIDA, and PP2A-b’ɤ, and found that those of COOLAIR, EDM2, and PP2A-b’ɤ were altered in the mutants. Furthermore, we demonstrated that AtU2AF65a and AtU2AF65b genes partially influenced FLC expression by analyzing these mutants in the flc-3 mutant background. Our findings indicate that AtU2AF65a and AtU2AF65b splicing factors modulate FLC expression by affecting the expression or AS patterns of a subset of FLC upstream regulators in the shoot apex, leading to different flowering phenotypes.

Funder

National Research Foundation (NRF) funded by the Ministry of Education of the Republic of Korea

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3