Enhancing Centelloside Production in Centella asiatica Hairy Root Lines through Metabolic Engineering of Triterpene Biosynthetic Pathway Early Genes

Author:

Alcalde Miguel Angel12ORCID,Palazon Javier1ORCID,Bonfill Mercedes1ORCID,Hidalgo-Martinez Diego1ORCID

Affiliation:

1. Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain

2. Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo 13001, Peru

Abstract

Centella asiatica is a medicinal plant with a rich tradition of use for its therapeutic properties. Among its bioactive compounds are centellosides, a group of triterpenoid secondary metabolites whose potent pharmacological activities have attracted significant attention. Metabolic engineering has emerged as a powerful biotechnological tool to enhance the production of target compounds. In this study, we explored the effects of overexpressing the squalene synthase (SQS) gene and transcription factor TSAR2 on various aspects of C. asiatica hairy root lines: the expression level of centelloside biosynthetic genes, morphological traits, as well as squalene, phytosterol, and centelloside content. Three distinct categories of transformed lines were obtained: LS, harboring At-SQS; LT, overexpressing TSAR2; and LST, simultaneously carrying both transgenes. These lines displayed noticeable alterations in morphological traits, including changes in branching rate and biomass production. Furthermore, we observed that the expression of T-DNA genes, particularly aux2 and rolC genes, significantly modulated the expression of pivotal genes involved in centelloside biosynthesis. Notably, the LS lines boasted an elevated centelloside content but concurrently displayed reduced phytosterol content, a finding that underscores the intriguing antagonistic relationship between phytosterol and triterpene pathways. Additionally, the inverse correlation between the centelloside content and morphological growth values observed in LS lines was countered by the action of TSAR2 in the LST and LT lines. This difference could be attributed to the simultaneous increase in the phytosterol content in the TSAR2-expressing lines, as these compounds are closely linked to root development. Overall, these discoveries offer valuable information for the biotechnological application of C. asiatica hairy roots and their potential to increase centelloside production.

Funder

Agencia Estatal de Investigación

Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) del Departament de Recerca i Universitats de la Generalitat de Catalunya

Ministry of Universities, the European Union Next GenerationEU/PRTR.i, and the Recovery, Transformation and Resilience Plan

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3