Receptor Plants Alleviated Allelopathic Stress from Invasive Chenopodium ambrosioides L. by Upregulating the Production and Autophagy of Their Root Border Cells

Author:

Wang Qiang1,Zhou Xijie1ORCID,He Shengli1,Wang Wenguo2,Ma Danwei1,Wang Yu1,Zhang Hong1

Affiliation:

1. College of Life Science, Sichuan Normal University, Chengdu 610101, China

2. Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China

Abstract

Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), as the main food crops, are usually affected by C. ambrosioides in their planting areas. The purpose of this study was to investigate the ultrastructure, autophagy, and release-related gene expression of receptor plant root border cells (RBCs) after exposure to volatile oil from C. ambrosioides and its main component α-terpene, which were studied using maize and soybean as receptor plants. The volatiles inhibited root growth and promoted a brief increase in the number of RBCs. As the volatile concentration increased, the organelles in RBCs were gradually destroyed, and intracellular autophagosomes were produced and continuously increased in number. Transcriptomic analysis revealed that genes involved in the synthesis of the plasma membrane and cell wall components in receptor root cells were significantly up-regulated, particularly those related to cell wall polysaccharide synthesis. Meanwhile, polygalacturonase and pectin methylesterases (PME) exhibited up-regulated expression, and PME activity also increased. The contribution of α-terpene to this allelopathic effect of C. ambrosioides volatile oil exceeded 70%. Based on these results, receptor plant root tips may increase the synthesis of cell wall substances while degrading the intercellular layer, accelerating the generation and release of RBCs. Meanwhile, their cells survived through autophagy of RBCs, indicating the key role of RBCs in alleviating allelopathic stress from C. ambrosioides volatiles.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3