New Insights on the Role of ß-Cyanoalanine Synthase CAS-C1 in Root Hair Elongation through Single-Cell Proteomics

Author:

Arenas-Alfonseca Lucía12,Yamada Masashi2ORCID,Romero Luis C.1ORCID,García Irene1ORCID

Affiliation:

1. Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-US, Avenida Américo Vespucio 49, 41092 Seville, Spain

2. Department of Biology, Duke University, Durham, NC 27708, USA

Abstract

(1) Background: Root hairs are specialized structures involved in water and plant nutrient uptake. They elongate from epidermal cells following a complex developmental program. ß-cyanoalanine synthase (CAS), which is mainly involved in hydrogen cyanide (HCN) detoxification in Arabidopsis thaliana, plays a role in root hair elongation, as evidenced by the fact that cas-c1 mutants show a severe defect in root hair shape. In addition to root hairs, CAS C1 is expressed in the quiescent center and meristem. (2) Methods: To identify its role in root hair formation, we conducted single-cell proteomics analysis by isolating root hair cells using Fluorescence-activated Cell Sorting (FACS) from wild-type and cas-c1 mutants. We also analyzed the presence of S-cyanylation, a protein post-translational modification (PTM) mediated by HCN and affecting cysteine residues and protein activity in proteins of wild type and cas-c1 mutants. (3) Results and Conclusions: We have found that the cas-c1 mutation has no visible effect on quiescent center or meristem root tissue, in both control and nutrient-deprivation conditions. We have identified more than 3900 proteins in root hairs and we have found that several proteins involved in root hair development, related to the receptor kinase FERONIA signaling and DNA methylation, are modified by S-cyanylation.

Funder

ERDF “A Way of Making Europe”

CSIC

Junta de Andalucía

Redox Network

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3