Differentiation in Nitrogen Transformations and Crop Yield as Affected by Tillage Modes in a Fluvo-Aquic Soil

Author:

Shen Fengmin1,Zhu Changwei1,Jiang Guiying1,Yang Jin1,Zhu Xuanlin1,Wang Shiji1,Wang Renzhuo1,Liu Fang1,Jie Xiaolei1,Liu Shiliang1

Affiliation:

1. College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Nitrogen is a vital element for soil fertility and crop productivity. The transformation of nitrogen is directly affected by tillage practices for the disturbing soil. The characteristics of different nitrogen forms under different tillage modes are still unclear. A 3-year cycle tillage experiment was carried out to assess the combination of rotary tillage (RT), deep tillage (DT), and shallow rotary tillage (SRT) on nitrogen transformation and distribution, wheat yield and nitrogen balance in fluvo-aquic soil from Huang-Huai-Hai Plain in China. The results showed the rotation tillage cycle with deep tillage in the first year increased the total nitrogen (TN), and the main nitrogen form content in 0–30 cm compared with continued rotary tillage (RT-RT-RT). Moreover, the nitrate (NO3−-N) and ammonium nitrogen (NH4+-N) content were improved in 20–40 cm by deep tillage practice with the highest value as 39.88 mg kg−1 under DT-SRT-RT. The time, tillage, and depth significantly affected the different nitrogen forms, but there was no effect on dissolved organic carbon (DON) and soil microbial biomass nitrogen (SMBN) by the interaction of time and tillage. Moreover, compared with RT-RT-RT, the rotation tillage promoted the spike number and kernels per spike of wheat, further increasing the wheat yield and nitrogen partial productivity, and with a better effect under DT-SRT-RT. The NO3−-N and NH4+-N trended closer and positively correlated with wheat yield in 0–40 cm in 2019. The rotation tillage with deep tillage improved the different forms of nitrogen in 0–30 cm, wheat yield, and nitrogen partial productivity, and decreased the apparent nitrogen loss. It was suggested as the efficiency tillage practice to improve nitrogen use efficiency and crop yield in this area.

Funder

National Key Research and Development Program of China

Key Research Project of Henan Colleges and Universities

Innovation Training Project of Henan Agricultural University

Undergraduate Laboratory Opening Project of Henan Agricultural University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3