Sand Burial, Rather than Salinity or Drought, Is the Main Stress That Limits the Germination Ability of Sophora alopecuroides L. Seed in the Desert Steppe of Yanchi, Ningxia, China

Author:

Zhao Jingdong123ORCID,Shi Chaoyi23,Wang Danyu23,Zhu Yuanjun23ORCID,Liu Jiankang1,Li Hanzhi23ORCID,Yang Xiaohui23

Affiliation:

1. Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China/Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China

2. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

3. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Global change and environmental pollution have reawakened ecologists to the great threat of multi-stress interactions to different growth stages of plants. Sophora alopecuroides L., a dune plant, has been widely studied for its medicinal components and strong salinity tolerance. S. alopecuroides seeds, obtained from the desert steppe of Yanchi, Ningxia, China, were used to analyze the effects of sand burial, salinity, drought, and their interactions on seed germination (germination percentage, germination energy, and germination index). The results showed that sand burial and salinity stress had significant effects on the seed germination ability of S. alopecuroides, and drought stress had no significant effect, but the interaction of the three stresses had a significant effect. Under different drought-stress treatments, the interaction of no sand burial and a certain degree of salinity stress significantly improved the germination ability of S. alopecuroides, and the overall intensity of the effects of the three stresses showed that sand burial > salinity > drought. Considering the germination percentage, germination energy, and germination index of S. alopecuroides under various stress interactions, the treatment of no sand burial × 1% soil saline-alkali content × 18–20% soil water content was adopted to maximize the germination ability of S. alopecuroides. In the desert steppe area of Yanchi, Ningxia, sand burial stress was still the most limiting factor for seed germination of S. alopecuroides, and soil saline-alkali content should be increased moderately, and soil moisture should be ensured to obtain the best germination ability.

Funder

Open Fund for Key Lab. of Land Degradation and Ecological Restoration in northwestern China of Ningxia University

Funding of Basic Scientific Research Operations of the Chinese Academy of Forestry

National Natural Science Foundation of Ningxia, China

International (Regional) Cooperation and Exchange Program of The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3