The Invasion of Alien Populations of Solanum elaeagnifolium in Two Mediterranean Habitats Modifies the Soil Communities in Different Ways

Author:

Karmezi Maria1,Krigas Nikos2ORCID,Papatheodorou Efimia M.3ORCID,Argyropoulou Maria D.1ORCID

Affiliation:

1. Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University, 54124 Thessaloniki, Greece

2. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece

3. Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University, 54124 Thessaloniki, Greece

Abstract

We aimed to explore how the invasion of the alien plant Solanum elaeagnifolium affects soil microbial and nematode communities in Mediterranean pines (Pinus brutia) and maquis (Quercus coccifera). In each habitat, we studied soil communities from the undisturbed core of both formations and from their disturbed peripheral areas that were either invaded or not by S. elaeagnifolium. Most studied variables were affected by habitat type, while the effect of S. elaeagnifolium was different in each habitat. Compared to maquis, the soil in pines had higher silt content and lower sand content and higher water content and organic content, supporting a much larger microbial biomass (PLFA) and an abundance of microbivorous nematodes. The invasion of S. elaeagnifolium in pines had a negative effect on organic content and microbial biomass, which was reflected in most bacterivorous and fungivorous nematode genera. Herbivores were not affected. In contrast, in maquis, organic content and microbial biomass responded positively to invasion, raising the few genera of enrichment opportunists and the Enrichment Index. Most microbivores were not affected, while herbivores, mostly Paratylenchus, increased. The plants colonizing the peripheral areas in maquis probably offered a qualitative food source to microbes and root herbivores, which in pines was not sufficient to affect the much larger microbial biomass.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3