Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato

Author:

Vurro Filippo1,Croci Michele2ORCID,Impollonia Giorgio2ORCID,Marchetti Edoardo1,Gracia-Romero Adrian34ORCID,Bettelli Manuele1ORCID,Araus José Luis3ORCID,Amaducci Stefano2,Janni Michela1ORCID

Affiliation:

1. Istituto dei Materiali per l’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy

2. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy

3. Integrative Crop Ecophysiology Group, Agrotecnio—Center for Research in Agrotechnology, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain

4. Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA), 251981 Lleida, Spain

Abstract

Monitoring plant growth and development during cultivation to optimize resource use efficiency is crucial to achieve an increased sustainability of agriculture systems and ensure food security. In this study, we compared field monitoring approaches from the macro to micro scale with the aim of developing novel in vivo tools for field phenotyping and advancing the efficiency of drought stress detection at the field level. To this end, we tested different methodologies in the monitoring of tomato growth under different water regimes: (i) micro-scale (inserted in the plant stem) real-time monitoring with an organic electrochemical transistor (OECT)-based sensor, namely a bioristor, that enables continuous monitoring of the plant; (ii) medium-scale (<1 m from the canopy) monitoring through red–green–blue (RGB) low-cost imaging; (iii) macro-scale multispectral and thermal monitoring using an unmanned aerial vehicle (UAV). High correlations between aerial and proximal remote sensing were found with chlorophyll-related indices, although at specific time points (NDVI and NDRE with GGA and SPAD). The ion concentration and allocation monitored by the index R of the bioristor during the drought defense response were highly correlated with the water use indices (Crop Water Stress Index (CSWI), relative water content (RWC), vapor pressure deficit (VPD)). A high negative correlation was observed with the CWSI and, in turn, with the RWC. Although proximal remote sensing measurements correlated well with water stress indices, vegetation indices provide information about the crop’s status at a specific moment. Meanwhile, the bioristor continuously monitors the ion movements and the correlated water use during plant growth and development, making this tool a promising device for field monitoring.

Funder

Italian Ministry of University and Research (MUR) under the PON Agrifood Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3