Comparative Physiology and Transcriptome Analysis Provides Insights into the Regulatory Mechanism of Albinotic Bambusa oldhamii

Author:

Qian Qixia1,Ye Quanfeng2,Xu Yin2,Vasupalli Naresh2,Lu Haiwen2,Hu Qiutao2,Hou Dan2ORCID

Affiliation:

1. College of Landscape Architecture, Zhejiang A&F University, Lin’An 311300, China

2. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An 311300, China

Abstract

Albinism is a unique problem encountered in tissue culture experiments, but the underlying mechanism remains unclear in most bamboo species. In this study, we identified the putative regulatory genes in an albino mutant of Bambusa oldhamii using comparative physiology and transcriptome analysis. The degeneration of chloroplasts, low chlorophyll (Chl) content and reduced photosynthetic capacity were observed in albinotic B. oldhamii compared to normal lines. A total of 6191 unigenes were identified that were clearly differentially expressed between albino and normal lines by transcriptome sequencing. Most genes related to chloroplast development (such as Psa, Psb) and pigment biosynthesis (such as LHC, GUN4, ZEP) were downregulated significantly in albinotic lines, which might be responsible for the albino phenotype. Moreover, some transcription factors (TFs) such as PIF and GLK1 were identified to be involved in chloroplast development and Chl synthesis, indicating the involvement of putative regulatory pathways PIF-LHC and GLK1-LHC/Psa/Psb in albinotic B. oldhamii. Finally, the downregulation of some stress responsive TFs (like ICE1 and EREB1) suggested a reduction in stress resistance of albinotic B. oldhamii. The above findings provided new insights into the molecular mechanism of albinism in bamboo.

Funder

National Foreign Experts Program

Scientific Research and Development Fund Project of ZAFU University

Research Fund for International Young Scientist by National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3