Impact of Aerated Drip Irrigation and Nitrogen Application on Soil Properties, Soil Bacterial Communities and Agronomic Traits of Cucumber in a Greenhouse System

Author:

Xiao Zheyuan1ORCID,Lei Hongjun1ORCID,Lian Yingji1,Zhang Zhenhua2,Pan Hongwei1ORCID,Yin Chen1,Dong Yecheng1

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Hydraulic Engineering, Ludong University, Yantai 264025, China

Abstract

Root hypoxia stress and soil nutrient turnover have been related to reduced crop productivity. Aerated drip irrigation (ADI) can effectively enhance crop productivity and yield. However, the response of the soil bacterial community to different irrigation water dissolved oxygen (DO) concentrations remains elusive due to the extreme sensitivity of microorganisms to environmental variations. We investigated the effects of aerated irrigation with different concentrations of DO on soil properties and agronomic performance of cucumber, as well as the contribution of the bacterial community. We performed experiments on cucumber cultivation in Shouguang, China, including different irrigation methods (ADI: O2–10 and O3–20 mg L−1, non-aerated groundwater: O1–5 mg L−1) and nitrogen (N) application rates: 240 and 360 kg N ha−1. ADI (particularly O2) significantly improved soil properties, root growth, cucumber yields, and irrigation water use efficiency (IWUE), and appropriate DO concentrations reduced N fertilizer application and increased crop yields. Furthermore, these changes were associated with bacterial community diversity, aerobic bacteria abundance, and consolidated bacterial population stability within the network module. Environmental factors such as soil respiration rate (Rs), DO, and NO3−-N have significant effects on bacterial communities. The FAPROTAX results demonstrated enhanced nitrification (Nitrospira) and aerobic nitrite oxidation by soil bacteria under ADI, promoting the accumulation of effective soil N and improved soil fertility and crop yield. Appropriate DO concentration is conducive to the involvement of soil bacterial communities in regulating soil properties and cucumber growth performance, which are vital for the sustainable development of facility agriculture.

Funder

National Natural Science Foundation of China

North China University of Water Resources and Electric Power

Key Research and Development Program Major Science and Technology Innovation Project in Shandong Province

Fund of Innovative Program for PhD Students at North China University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3