Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X

Author:

Tonu Nazmoon Naher1,Wen Rui1,Song Tao1,Guo Xiaowei2,Murphy Lee Anne2,Gossen Bruce Dean1ORCID,Yu Fengqun1,Peng Gary1

Affiliation:

1. Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada

2. Pest Surveillance Initiative, 5A-1325 Markham Road, Winnipeg, MB R3T 4J6, Canada

Abstract

Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil.

Funder

Canola Science Cluster

Canadian Agriculture Partnership program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3