Transcriptional Expression of Nitrogen Metabolism Genes and Primary Metabolic Variations in Rice Affected by Different Water Status

Author:

Kim Gahyun1,Sung Jwakyung1

Affiliation:

1. Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

The era of climate change strongly requires higher efficiency of energies, such as light, water, nutrients, etc., during crop production. Rice is the world’s greatest water-consuming plant, and, thus, water-saving practices such as alternative wetting and drying (AWD) are widely recommended worldwide. However the AWD still has concerns such as lower tillering, shallow rooting, and an unexpected water deficit. The AWD is a possibility to not only save water consumption but also utilize various nitrogen forms from the soil. The current study tried to investigate the transcriptional expression of genes in relation to the acquisition-transportation-assimilation process of nitrogen using qRT-PCR at the tillering and heading stages and to profile tissue-specific primary metabolites. We employed two water supply systems, continuous flooding (CF) and alternative wetting and drying (AWD), during rice growth (seeding to heading). The AWD system is effective at acquiring soil nitrate; however, nitrogen assimilation was predominant in the root during the shift from the vegetative to the reproductive stage. In addition, as a result of the greater amino acids in the shoot, the AWD was likely to rearrange amino acid pools to produce proteins in accordance with phase transition. Accordingly, it is suggested that the AWD 1) actively acquired nitrate from soil and 2) resulted in an abundance of amino acid pools, which are considered a rearrangement under limited N availability. Based on the current study, further steps are necessary to evaluate form-dependent N metabolism and root development under the AWD condition and a possible practice in the rice production system.

Funder

Cooperative Research Program for Agriculture Science and Technology Development

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference48 articles.

1. Food and Agriculture Organization (2016). Climate Change and Food Security: Risks and Responses, FAO.

2. Yearbook, F.F.S. (2020). World Food and Agriculture 2020, FAO.

3. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil;Kirk;New Phytol.,2003

4. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice;Lampayan;Field Crops Res.,2015

5. Field water management to save water and increase its productivity in irrigated lowland rice;Bouman;Agric. Water Manag.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3