Proteomic Approach during the Induction of Somatic Embryogenesis in Coffea canephora

Author:

Quintana-Escobar Ana Odetth1ORCID,Bojórquez-Velázquez Esaú2ORCID,Ruiz-May Eliel2ORCID,Loyola-Vargas Víctor Manuel1ORCID

Affiliation:

1. Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 x 32 y 34, Mérida CP 97205, Yucatán, Mexico

2. Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, Xalapa CP 91070, Veracruz, Mexico

Abstract

Plant growth regulators (PGR) are essential for somatic embryogenesis (SE) in different species, and Coffea canephora is no exception. In our study model, previously, we have been able to elucidate the participation of various genes involved in SE by using different strategies; however, until now, we have not used a proteomic approach. This research seeks to contribute to understanding the primary cellular pathways involved in developing SE in C. canephora. The process of our model consists of two stages: (1) preconditioning in MS medium with auxin (NAA) and cytokinin (KIN), and (2) induction in Yasuda liquid medium added with cytokinin (BA). Therefore, in this study, we analyzed different days of the SE induction process using shotgun label-free proteomics. An amount of 1630 proteins was found among different sampling days of the process, of which the majority were accumulated during the induction stage. We found that some of the most enriched pathways during this process were the biosynthesis of amino acids and secondary metabolites. Eighteen proteins were found related to auxin homeostasis and two to cytokinin metabolism, such as ABC, BIG, ILR, LOG, and ARR. Ten proteins and transcription factors related to SE were also identified, like SERK1, SKP1, nuclear transcription factor Y, MADS-box, and calreticulin, and 19 related to other processes of plant development, among which the 14-3-3 and PP2A proteins stand out. This is the first report on the proteomic approach to elucidate the mechanisms that operate during the induction of SE in C. canephora. So, our findings provide the groundwork for future, more in-depth research. Data are available via ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD047172.

Funder

National Council of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3