Characterization and Therapeutic Applications of Biosynthesized Silver Nanoparticles Using Cassia auriculate Flower Extract

Author:

Sabapathi Nadana1,Ramalingam Srinivasan2,Aruljothi Kandasamy Nagarajan3ORCID,Lee Jintae4,Barathi Selvaraj4ORCID

Affiliation:

1. Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China

2. Department of Horticulture & Life Science, Yeungnam University, Gyeongsan-si 38541, Republic of Korea

3. Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India

4. School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea

Abstract

The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The results of the spectral characterization have revealed that the surface Plasmon resonance band observed at 448 nm confirms the formation of AgNPs. TEM analysis of the Ca-AgNPs was a predominately spherical shape with a size assortment of 30 to 80 nm and an angular size of 50 nm. The well-analyzed Ca-AgNPs were used in various biological assays, including healthcare analysis of antimicrobial, antioxidant (DPPH), and cytotoxic investigations. Ca-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity against to pathogenic strains. The occurrence of Ca-AgNPs lead to reduced Live/Dead ratio of bacteria (from 36.97 ± 1.35 to 9.43 ± 0.27) but improved the accumulation of bacterial clusters. The cytotoxicity of Ca-AgNPs was carried out by MTT assay against MCF-7 breast cancer cells and a moderate cytotoxic. The approach of flower extract-mediated synthesis is a cost-efficient, eco-friendly, and easy alternative to conventional methods of silver nanoparticle synthesis.

Funder

National Research Foundation of Korea

Ministry of Education

Korean government

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3