The Response of Chromosomally Engineered Durum Wheat-Thinopyrum ponticum Recombinant Lines to the Application of Heat and Water-Deficit Stresses: Effects on Physiological, Biochemical and Yield-Related Traits

Author:

Giovenali Gloria1,Kuzmanović Ljiljana1ORCID,Capoccioni Alessandra1,Ceoloni Carla1ORCID

Affiliation:

1. Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy

Abstract

Abiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted to harsh environments, represents a useful strategy. We tested three DW-Thinopyrum ponticum recombinant lines (R5+, R112+, R23+), their control sibs lacking any alien introgression, and the heat-tolerant cv. Margherita for their physiological, biochemical and yield response to heat stress (HS) application at anthesis, also in combination with water-deficit stress applied from booting until maturity. Under HS, R5+ and R112+ (23%- and 28%-long 7el1L Th. ponticum chromosome segment distally inserted on DW 7AL, respectively) showed remarkable stability of the yield-related traits; in turn, R23+ (40%-long 7el1L segment), despite a decreased grain yield, exhibited a greater spike fertility index and proline content in spike than its control sib. Under water-deficit + HS, R5+ showed the highest increment in water use efficiency and in flag leaf proline content, accompanied by the lowest yield penalty even vs. Margherita. This research confirms the value of harnessing wild gene pools to enhance DW stress tolerance and represents a starting point for elucidating the mechanisms of Thinopyrum spp. contribution to this relevant breeding target.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3