Large–Scale Transposon Mutagenesis Reveals Type III Secretion Effector HopR1 Is a Major Virulence Factor in Pseudomonas syringae pv. actinidiae

Author:

Ishiga Takako,Sakata Nanami,Usuki Giyu,Nguyen Viet Tru,Gomi KenjiORCID,Ishiga YasuhiroORCID

Abstract

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3