Planning Spatial Layout of a Typical Salt Tolerant Forage of Sweet Sorghum in the Yellow River Delta via Considering Resource Constraints, Nitrogen Use Efficiency, and Economic Benefits

Author:

Gao Yinan12ORCID,Shao Changxiu13,Liu Zhen1ORCID,Sun Zhigang145,Long Buju2,Feng Puyu6

Affiliation:

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

3. Beijing Presky Technology Co., Ltd., Beijing 100195, China

4. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

5. Zhongke Shandong Dongying Institute of Geography, Dongying 257000, China

6. College of Land Science and Technology, China Agricultural University, Beijing 100193, China

Abstract

In order to effectively address the issue of severe soil salinization in the coastal area of the Yellow River Delta, which has led to a significant number of medium and low-yield fields in this region, and to satisfy the rising demand for feed grain in China in recent years, a highly effective solution is to replace conventional crops by cultivating a specialized type of forage grass that can withstand high salinity levels and is well adapted to the local climate. This study proposed a spatial layout scheme for planting salt-tolerant forages, with the aim of providing a foundation for enhancing saline-alkali land and increasing resource utilization efficiency. The results showed that the climate conditions in the Yellow River Delta were suitable for planting sweet sorghum. With respect to soil salt content, the suitable planting regions for sweet sorghum can be classified into four categories: Suitable, moderately suitable, less suitable, and unsuitable, with soil salt concentrations of 2.62–5.25‰, 5.25–7.88‰, respectively. Concerning economic benefits, sweet sorghum’s input-output ratio (74.4%) surpasses that of cotton in high saline-alkali zones, providing a significant advantage in comparison with traditional crops. In non-saline-alkali and light saline-alkali areas, the traditional winter wheat-summer maize planting system offers higher economic benefits and nitrogen use efficiency, so it is recommended to maintain this system as the dominant agricultural model. In moderately and severe saline-alkali zones, although one-season maize exhibits greater nitrogen efficiency, its economic benefits are lower than those of sweet sorghum. Hence, it is advisable to promote one-season maize in suitable regions and introduce salt-tolerant forage, such as sweet sorghum in other areas. This approach offers novel ideas and methods for crop spatial layout planning and addresses potential feed grain shortages in the region.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Key deployment projects of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3