Silicon Combined with Melatonin Reduces Cd Absorption and Translocation in Maize

Author:

Xu Lina1,Xue Xing1,Yan Yan1,Zhao Xiaotong1,Li Lijie1ORCID,Sheng Kun2ORCID,Zhang Zhiyong1ORCID

Affiliation:

1. College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China

2. School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China

Abstract

Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.

Funder

National Key R&D Program

Program for Innovative Research Team (in Science and Technology) in University of Henan Province

Key Research and Development Projects of Henan Province

Science and Technology Project of Henan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3