Nitrogen Fertilization in a Faba Bean–Wheat Intercropping System Can Alleviate the Autotoxic Effects in Faba Bean

Author:

Cen Zixuan1,Zheng Yiran1,Guo Yuting1,Yang Siyin1,Dong Yan1

Affiliation:

1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650000, China

Abstract

Continuous cultivation of the faba bean will lead to its autotoxicity. Faba bean–wheat intercropping can effectively alleviate the autotoxicity of the faba bean. In order to investigate the autotoxicity of water extracts of various parts of the faba bean, we prepared water extracts of various parts of the faba bean, such as the roots, stems, leaves, and rhizosphere soil. The results showed various parts of the faba bean significantly inhibited the germination of faba bean seeds. The main autotoxins in these parts were analyzed using HPLC. Six autotoxins, namely, p-hydroxybenzoic acid, vanillic acid, salicylic acid, ferulic acid, benzoic acid, and cinnamic acid, were identified. The exogenous addition of these six autotoxins significantly inhibited the germination of faba bean seeds in a concentration-dependent manner. Furthermore, field experiments were conducted to investigate the effects of various levels of nitrogen fertilizer on the autotoxin content and the aboveground dry weight of the faba bean in a faba bean–wheat intercropping system. The application of various levels of nitrogen fertilizer in the faba bean–wheat intercropping system could significantly reduce the content of autotoxins and increase the aboveground dry weight in faba bean, particularly at the N2 level (90 kg/hm2). The above results showed that the water extracts of faba bean roots, stems, leaves, and rhizosphere soil inhibited faba bean seed germination. The autotoxicity in faba bean under continuous cropping could be caused by p-hydroxybenzoic acid, vanillic acid, salicylic acid, ferulic acid, benzoic acid, and cinnamic acid. The autotoxic effects in the faba bean were effectively mitigated by the application of nitrogen fertilizer in a faba bean–wheat intercropping system.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3