The Effect of Silver Nanoparticle Addition on Micropropagation of Apricot Cultivars (Prunus armeniaca L.) in Semisolid and Liquid Media

Author:

Pérez-Caselles Cristian1ORCID,Burgos Lorenzo1ORCID,Sánchez-Balibrea Inmaculada1ORCID,Egea Jose A.2ORCID,Faize Lydia1ORCID,Martín-Valmaseda Marina1,Bogdanchikova Nina3,Pestryakov Alexey4ORCID,Alburquerque Nuria1ORCID

Affiliation:

1. Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain

2. Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain

3. Center for Nanoscience and Nanotechnology (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico

4. Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia

Abstract

Silver nanoparticles (AgNPs) are novel compounds used as antimicrobial and antiviral agents. In addition, AgNPs have been used to improve the growth of different plants, as well as the in vitro multiplication of plant material. In this work the effect of AgNPs on in vitro growth of ‘Canino’ and ‘Mirlo Rojo’ cultivars, as well as the leaf ion composition, are studied. Different concentrations of AgNPs (0, 25, 50, 75 and 100 mg L−1) were added to two culture systems: semisolid medium with agar (SSM) in jars and liquid medium in temporary immersion system (TIS). Proliferation (number of shoots), shoot length, productivity (number of shoot × average length), leaf surface, fresh and dry weight were measured. Additionally, the silver and other ion accumulation in the leaves were evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. The productivity of ‘Canino’ and ‘Mirlo Rojo’ decreased when increasing the concentration of AgNPs in the semisolid medium. However, the use of AgNPs in the TIS improved the proliferation and productivity of ‘Canino’ and Mirlo Rojo’, increasing biomass production, and the concentration of nutrients in the plants, although these effects are genotype-dependent. TISs are the best system for introducing silver into shoots, the optimum concentration being 50 mg L−1 for ‘Canino’ and 75 mg L−1 for ‘Mirlo Rojo’. Principal component analysis, considering all the analyzed ions along the treatments, separates samples in two clear groups related to the culture system used. The use of bioreactors with a liquid medium has improved the productivity of ‘Canino’ and ‘Mirlo Rojo’ in the proliferation stage, avoiding hyperhydration and other disorders. The amount of metallic silver that penetrates apricot plant tissues depends on the culture system, cultivar and concentration of AgNPs added to the culture medium. Silver ion accumulation measured in the shoots grown in the TIS was higher than in shoots micropropagated in a semisolid medium, where it is barely detectable. Furthermore, AgNPs had a beneficial effect on plants grown in TIS. However, AgNPs had a detrimental effect when added to a semisolid medium.

Funder

Comunidad Autónoma Región de Murcia-Fundación Séneca-Spain. European Union

Spanish Ministry of Education

Russian Science Foundation and Tomsk region

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3