Gene Coexpression Analysis Identifies Genes Associated with Chlorophyll Content and Relative Water Content in Pearl Millet

Author:

Shinde Harshraj1,Dudhate Ambika2,Sathe Atul3,Paserkar Neha4,Wagh Sopan Ganpatrao5,Kadam Ulhas Sopanrao6ORCID

Affiliation:

1. Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA

2. Sequencing and Discovery Genomics Center, Stowers Institute for Medical Research, Kansas City, MO 64110, USA

3. Plant Science Department, McGill University, Macdonald Campus, Sainte Anne de Bellevue, QC H9X 3V9, Canada

4. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

5. Department of Adaptive Biotechnology, Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic

6. Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science (BK21 Four), Gyeongsang National University, Jinju-Daero, Jinju 52828, Gyeongnam-do, Republic of Korea

Abstract

Pearl millet is a significant crop that is tolerant to abiotic stresses and is a staple food of arid regions. However, its underlying mechanisms of stress tolerance are not fully understood. Plant survival is regulated by the ability to perceive a stress signal and induce appropriate physiological changes. Here, we screened for genes regulating physiological changes such as chlorophyll content (CC) and relative water content (RWC) in response to abiotic stress by using “weighted gene coexpression network analysis” (WGCNA) and clustering changes in physiological traits, i.e., CC and RWC associated with gene expression. Genes’ correlations with traits were defined in the form of modules, and different color names were used to denote a particular module. Modules are groups of genes with similar patterns of expression, which also tend to be functionally related and co-regulated. In WGCNA, the dark green module (7082 genes) showed a significant positive correlation with CC, and the black (1393 genes) module was negatively correlated with CC and RWC. Analysis of the module positively correlated with CC highlighted ribosome synthesis and plant hormone signaling as the most significant pathways. Potassium transporter 8 and monothiol glutaredoxin were reported as the topmost hub genes in the dark green module. In Clust analysis, 2987 genes were found to display a correlation with increasing CC and RWC. Furthermore, the pathway analysis of these clusters identified the ribosome and thermogenesis as positive regulators of RWC and CC, respectively. Our study provides novel insights into the molecular mechanisms regulating CC and RWC in pearl millet.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3