Affiliation:
1. Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China
2. Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Abstract
Tea plants are highly susceptible to the adverse effects of a high-temperature climate, which can cause reduced yield and quality and even lead to plant death in severe cases. Therefore, reducing the damage caused by high-temperature stress and maintaining the photosynthetic capacity of tea plants is a critical technical challenge. In this study, we investigated the impact of small oligopeptides (small peptides) and surfactants on the high-temperature-stress tolerance of tea plants. Our findings demonstrated that the use of small peptides and surfactants enhances the antioxidant capacity of tea plants and protects their photosynthetic system. They also induce an increase in gibberellin (GA) content and a decrease in jasmonic acid (JA), strigolactone (SL), auxin (IAA), and cytokinin (CTK) content. At the same time, small peptides regulate the metabolic pathways of diterpenoid biosynthesis. Additionally, small peptides and surfactants induce an increase in L-Carnosine and N-Glycyl-L-Leucine content and a decrease in (5-L-Glutamyl)-L-Amino Acid content, and they also regulate the metabolic pathways of Beta-Alanine metabolism, Thiamine metabolism, and Glutathione metabolism. In summary, small peptides and surfactants enhance the ability of tea plants to resist high-temperature stress.
Funder
Technology System of Modern Agricultural Industry in Shandong Province
Special Foundation for Distinguished Taishan Scholar of Shandong Province
Livelihood Project of Qingdao City
Special Talent Program of SAAS
Agricultural Improved Variety Project of Shandong Province
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献